20 research outputs found

    BIO-INSPIRED SONAR IN COMPLEX ENVIRONMENTS: ATTENTIVE TRACKING AND VIEW RECOGNITION

    Get PDF
    Bats are known for their unique ability to sense the world through echolocation. This allows them to perceive the world in a way that few animals do, but not without some difficulties. This dissertation explores two such tasks using a bio-inspired sonar system: tracking a target object in cluttered environments, and echo view recognition. The use of echolocation for navigating in dense, cluttered environments can be a challenge due to the need for rapid sampling of nearby objects in the face of delayed echoes from distant objects. If long-delay echoes from a distant object are received after the next pulse is sent out, these “aliased” echoes appear as close-range phantom objects. This dissertation presents three reactive strategies for a high pulse-rate sonar system to combat aliased echoes: (1) changing the interpulse interval to move the aliased echoes away in time from the tracked target, (2) changing positions to create a geometry without aliasing, and (3) a phase-based, transmission beam-shaping strategy to illuminate the target and not the aliasing object. While this task relates to immediate sensing needs and lower level motor loops, view recognition is involved in higher level navigation and planning. Neurons in the mammalian brain (specifically in the hippocampus formation) named “place cells” are thought to reflect this recognition of place and are involved in implementing a spatial map that can be used for path planning and memory recall. We propose hypothetical “echo view cells” that could contribute (along with odometry) to the creation of place cell representations actually observed in bats. We strive to recognize views over extended regions that are many body lengths in size, reducing the number of places to be remembered for a map. We have successfully demonstrated some of this spatial invariance by training feed-forward neural networks (traditional neural networks and spiking neural networks) to recognize 66 distinct places in a laboratory environment over a limited range of translations and rotations. We further show how the echo view cells respond in between known places and how the population of cell outputs can be combined over time for continuity

    Grassland Resistance and Resilience after Drought Depends on Management Intensity and Species Richness

    Get PDF
    The degree to which biodiversity may promote the stability of grasslands in the light of climatic variability, such as prolonged summer drought, has attracted considerable interest. Studies so far yielded inconsistent results and in addition, the effect of different grassland management practices on their response to drought remains an open question. We experimentally combined the manipulation of prolonged summer drought (sheltered vs. unsheltered sites), plant species loss (6 levels of 60 down to 1 species) and management intensity (4 levels varying in mowing frequency and amount of fertilizer application). Stability was measured as resistance and resilience of aboveground biomass production in grasslands against decreased summer precipitation, where resistance is the difference between drought treatments directly after drought induction and resilience is the difference between drought treatments in spring of the following year. We hypothesized that (i) management intensification amplifies biomass decrease under drought, (ii) resistance decreases with increasing species richness and with management intensification and (iii) resilience increases with increasing species richness and with management intensification

    Moving in the anthropocene: global reductions in terrestrial mammalian movements

    Get PDF
    Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission

    Primate responses to changing environments in the anthropocene

    Get PDF
    Most primates have slow life-histories and long generation times. Because environmental change is occurring at an unprecedented rate, gene-based adaptations are unlikely to evolve fast enough to offer successful responses to these changes. The paper reviews the most common types of habitat/landscape alterations, the extent of human-primate interactions, and the impact of climate change. It demonstrates how understanding behavioural flexibility as a response to environmental change will be crucial to optimize conservation efforts by constructing informed management plans. Comparisons across species, space, and time can be used to draw generalizations about primate responses to environmental change while considering their behavioural flexibility

    Classifying complex Faraday spectra with convolutional neural networks

    No full text
    Advances in radio spectropolarimetry offer the possibility to disentangle complex regions where relativistic and thermal plasmas mix in the interstellar and intergalactic media. Recent work has shown that apparently simple Faraday rotation measure spectra can be generated by complex sources. This is true even when the distribution of rotation measures in the complex source greatly exceeds the errors associated with a single component fit to the peak of the Faraday spectrum. We present a convolutional neural network that can differentiate between simple Faraday thin spectra and those that contain multiple (two) Faraday thin sources. We demonstrate that this network, trained for the upcoming Polarization Sky Survey of the Universe's Magnetism early science observations, can identify two component sources 99 per cent of the time, provided that the sources are separated in Faraday depth by >10 per cent of the full width at half-maximum of the Faraday point spread function, the polarized flux ratio of the sources is >0.1, and that the signal-to-noise ratio (S/N) of the primary component is >5. With this S/N cut-off, the false positive rate (simple sources misclassified as complex) is <0.3 per cent. Work is ongoing to include Faraday thick sources in the training and testing of the convolutional neural network

    Above‐ and below‐ground complementarity rather than selection drive tree diversity–productivity relationships in European forests

    Get PDF
    1. Biodiversity experiments have identified both complementarity and selection as important drivers of the relationship between biodiversity and ecosystem functioning. However, their relative importance in above- and below-ground ecosystem compartments of mature forests remains yet to be explored.2. We adopted a trait-based approach to partition biodiversity effects in above- and below-ground complementarity and selection. This approach was based on canopy and root traits measured in single- and mixed-species plots in mature forests across a European latitudinal gradient.3. We assessed the relative importance of above- and below-ground selection and complementarity in driving the relationship between tree species diversity and above-ground wood production. We used the expected values (based on the values measured in monocultures) of leaf area index (LAI) and fine root biomass as proxies for above- and below-ground selection, whereas canopy packing and rooting depth variability were used as proxies for above- and below-ground complementarity.4. Our results showed that tree species richness-wood production relationships were driven by above- and below-ground complementarity (i.e. canopy packing and rooting depth variability), rather than selection. The proxies for selection were found to have a positive effect on wood production but were not affected by tree species richness.5. We concluded that above-ground-but also the largely neglected below-ground complementarity drives biodiversity-productivity relationships in mature forests. Our findings suggest that choosing tree species with complementary above- and below-ground traits should be considered in afforestation and forest management to promote tree diversity and productivity in European forests
    corecore